Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 470: 134263, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38613951

RESUMO

Nanotechnology offers a promising and innovative approach to mitigate biotic and abiotic stress in crop production. In this study, the beneficial role and potential detoxification mechanism of biogenic selenium nanoparticles (Bio-SeNPs) prepared from Psidium guajava extracts in alleviating antimony (Sb) toxicity in rice seedlings (Oryza sativa L.) were investigated. The results revealed that exogenous addition of Bio-SeNPs (0.05 g/L) into the hydroponic-cultured system led to a substantial enhancement in rice shoot height (73.3%), shoot fresh weight (38.7%) and dry weight (28.8%) under 50 µM Sb(III) stress conditions. Compared to Sb exposure alone, hydroponic application of Bio-SeNPs also greatly promoted rice photosynthesis, improved cell viability and membrane integrity, reduced reactive oxygen species (ROS) levels, and increased antioxidant activities. Meanwhile, exogenous Bio-SeNPs application significantly lowered the Sb accumulation in rice roots (77.1%) and shoots (35.1%), and reduced its root to shoot translocation (55.3%). Additionally, Bio-SeNPs addition were found to modulate the subcellular distribution of Sb and the expression of genes associated with Sb detoxification in rice, such as OsCuZnSOD2, OsCATA, OsGSH1, OsABCC1, and OsWAK11. Overall, our findings highlight the great potential of Bio-SeNPs as a promising alternative for reducing Sb accumulation in crop plants and boosting crop production under Sb stress conditions.


Assuntos
Antimônio , Antioxidantes , Regulação da Expressão Gênica de Plantas , Nanopartículas , Oryza , Selênio , Oryza/efeitos dos fármacos , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/genética , Antimônio/toxicidade , Antioxidantes/metabolismo , Selênio/toxicidade , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Nanopartículas/toxicidade , Nanopartículas/química , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/crescimento & desenvolvimento
2.
J Hazard Mater ; 469: 133897, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38442599

RESUMO

Microbial antimony (Sb) oxidation in the root rhizosphere and the formation of iron plaque (IP) on the root surface are considered as two separate strategies to mitigate Sb(III) phytotoxicity. Here, the effect of an Sb-oxidizing bacterium Bacillus sp. S3 on IP characteristics of rice exposed to Sb(III) and its alleviating effects on plant growth were investigated. The results revealed that Fe(II) supply promoted IP formation under Sb(III) stress. However, the formed IP facilitated rather than hindered the uptake of Sb by rice roots. In contrast, the combined application of Fe(II) and Bacillus sp. S3 effectively alleviated Sb(III) toxicity in rice, resulting in improved rice growth and photosynthesis, reduced oxidative stress levels, enhanced antioxidant systems, and restricted Sb uptake and translocation. Despite the ability of Bacillus sp. S3 to oxidize Fe(II), bacterial inoculation inhibited the formation of IP, resulting in a reduction in Sb absorption on IP and uptake into the roots. Additionally, the bacterial inoculum enhanced the transformation of Sb(III) to less toxic Sb(V) in the culture solution, further influencing the adsorption of Sb onto IP. These findings highlight the potential of combining microbial Sb oxidation and IP as an effective strategy for minimizing Sb toxicity in sustainable rice production systems.


Assuntos
Bacillus , Oryza , Poluentes do Solo , Ferro , Antimônio/toxicidade , Raízes de Plantas , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Bactérias , Oxirredução , Compostos Ferrosos
3.
J Environ Sci (China) ; 141: 1-15, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38408812

RESUMO

Hexavalent chromium (Cr(VI)) is a toxic element that has negative impacts on crop growth and yield. Using plant extracts to convert toxic Cr(VI) into less toxic Cr(III) may be a more favorable option compared to chemical reducing agents. In this study, the potential effects and mechanisms of using an aqueous extract of Psidium guajava L. leaves (AEP) in reducing Cr(VI) toxicity in rice were comprehensively studied. Firstly, the reducing power of AEP for Cr(VI) was confirmed by the cyclic voltammetry combined with X-ray photoelectron spectroscopy (XPS) assays. The highest Cr(VI) reduction efficiency reached approximately 78% under 1.5 mg gallic acid equivalent (GAE)/mL of AEP and 10 mg/L Cr(VI) condition. Additionally, Cr(VI) stress had a significant inhibitory effect on rice growth. However, the exogenous application of AEP alleviated the growth inhibition and oxidative damage of rice under Cr(VI) stress by increasing the activity and level of enzymatic and non-enzymatic antioxidants. Furthermore, the addition of AEP restored the ultrastructure of root cells, promoted Cr adsorption onto root cell walls, and limited the translocation Cr to shoots. In shoots, AEP application also triggered the expression of specific genes involved in Cr defense and detoxification response, including photosynthesis pathways, antioxidant systems, flavonoids biosynthesis, and plant hormone signal transduction. These results suggest that AEP is an efficient reduction agent for Cr(VI), and exogenous application of AEP may be a promising strategy to mitigate the harm of Cr(VI) on rice, ultimately contributing to improved crop yield in Cr-contaminated environments.


Assuntos
Oryza , Psidium , Plântula/metabolismo , Psidium/metabolismo , Oryza/metabolismo , Antioxidantes/metabolismo , Cromo/toxicidade , Cromo/metabolismo , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia
4.
Int J Biol Macromol ; 258(Pt 2): 129089, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38161017

RESUMO

Selenium nanoparticles (SeNPs) have gained significant attention owing to their favorable bioavailability and low toxicity, making them widely applications in the fields of medicine, food and agriculture. In this study, bacterial extracellular polymeric substances (EPS) were used as a novel stabilizer and capping agent to prepare dispersed SeNPs. Results show that EPS-SeNPs presented negative potential (-38 mV), spherical morphologies with average particle size about 100-200 nm and kept stable at room temperature for a long time. X-ray diffraction (XRD) analysis demonstrated that the synthesized nanoparticles were pure amorphous nanoparticles, and X-ray photoelectron spectroscopy (XPS) spectrum showed a spike at 55.6 eV, indicating the presence of zero-valent nano­selenium. Fourier-transform infrared spectroscopy (FTIR) and three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy analysis confirmed proteins and polysaccharides in EPS played a crucial role in the synthesis of EPS-SeNPs. Compared to EPS or sodium selenite (Na2SeO3), EPS-SeNPs showed a relatively moderate result in terms of scavenging free radicals in vitro. In contrast, EPS-SeNPs demonstrated lower toxicity to rice seeds than Na2SeO3. Notably, the exogenous application of EPS-SeNPs effectively alleviated the growth inhibition and oxidative damaged caused by cadmium (Cd), and significantly reduced Cd accumulation in rice plants.


Assuntos
Nanopartículas , Oryza , Selênio , Selênio/química , Cádmio , Matriz Extracelular de Substâncias Poliméricas , Polissacarídeos , Nanopartículas/química
5.
J Hazard Mater ; 445: 130465, 2023 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-36436453

RESUMO

Phosphate solubilizing bacteria (PSB) induced phosphate precipitation is considered as an effective method for Pb(II) removal through the formation of stable Pb(II)-phosphate compound, but the location of end-products is still unclear. Herein, the PSB strain of Burkholderia cepacia (B. cepacia) coupled with the hydroxyapatite (HAP) was used in this study to investigate the Pb(II) removal mechanism and the biomineralization location. The dissolving phosphate of three particle sizes of HAP and Pb(II) resistant capabilities, and the effect factors such as HAP dosage, initial concentrations of Pb(II), pH, temperature, and different treatments were determined. The results indicated that the highest soluble phosphate could reach 224.85 mg/L in a 200 nm HAP medium and the highest removal efficiency of Pb(II) was about 96.32 %. Additionally, it was interesting that Pb(II) was mainly located in the periplasmic space through the cellular distribution experiment, which was further demonstrated by scanning electron microscope (SEM) and transmission electron microscopy (TEM). Besides, the characterization results showed that the functional groups such as amide, hydroxy, carboxy and phosphate played an important role in Pb(II) biomineralization, and the free Pb(II) in aqueous solution could be transformed into pyromorphite through phosphate dissolution, extracellular adsorption/complexation, and intracellular precipitation.


Assuntos
Burkholderia cepacia , Chumbo , Periplasma , Biomineralização , Bactérias , Durapatita/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...